理论物理新方向用高一维的拓扑序来全息理解量子场论


本文来自:返朴 (ID:fanpu2019),作者:文小刚(美国国家科学院院士、麻省理工学院格林讲席教授),编辑:陈钢(北京大学)凝聚态物理是研究多体系统(如材料)物理性质的学科。该领域最重要的问题之一是理解材料中大量自由度在量子基态(即低温态)下的组织形式,因为系统几乎所有的低温性质都由此决定。我们将量子基态中的这种组织形式称为“量子纠缠模式”。数学上,N粒子系统的基态由波函数,一个关于N个变量的复函数Φ(m1,m2,…,mN),来描述。要理解多体系统的量子纠缠模式(即理解多体系统的量子相——这里的“相”指液相、固相等相态),我们需要对N→∞极限下的复波函数Φ(m1,m2,…,mN)进行分类。这种分类问题是物理学最基础的问题之一,因为它决定了多体系统可能存在的相态。由于历史原因,长期以来物理学家认为波函数(即量子纠缠模式)可通过对称性分类,例如波函数是否在”自旋”旋转Φ(mi)→Φ(mi+m)下保持不变。基于此种观点,人们认为物质的相也由对称性分类,而对称性都可用数学中的群论来描写。这就是群论成为物理学重要数学基础的原因,也是每位物理学生都需要学习群论的原因。然而1989年的研究发现,仅凭对称性不足以完全分类波函数Φ(m1,m2,…,mN)具备的所有可能的组织形式。为了理解超越对称性的新型多体组织形式,我们需要把物质态分为两类。一类是有能隙的物质态,一类是无能隙的物质态。有能隙的物质态,包括绝缘体,量子霍尔态等等,其需要注入一个有限大小的能量来产生一个激发。无能隙的物质态,包括超导体,超流体,量子相变的临界点等等,其产生一个激发所需的能量可以是无限小。这两种物质态,都具有超越对称性的组织形式(也具有由对称性所描写的组织形式)。在有能隙系统中,这种超越对称性的新型多体组织形式被称为“拓扑序”(2010年,我们意识到拓扑序本质上是长程纠缠的模式),这开启了凝聚态物理理论研究的一个新方向。超越对称性框架,在N→∞极限下,对波函数Φ(m1,m2,…,mN)进行完全分类,这一数学问题极具挑战性。而发展这一描述多体纠缠模式的数学理论至关重要,代表着理论物理的未来方向。其实,多体纠缠(即拓扑序)是物理学中的全新现象,其需要全新数学语言来描述。这正像牛顿时代曲线运动需要全新的数学——微积分——来描述。这种新数学是什么?2005年以来的研究表明,高阶融合范畴理论可能正是描述长程纠缠的数学框架,正如群论是描述物理中对称破缺的数学框架,这为我们全面理解有能隙物态提供了数学的框架及语言。这让我们对有能隙物态有了一个完全系统的理解。下一步,我们想要完全系统地理解联无能隙量子物态与量子场论(这两个名称指向同一问题)。这些无能隙的量子物质可能甚至没有弱相互作用的准粒子激发。这是理论物理学长期悬而未决的难题。我们在量子色动力学(QCD)、早期宇宙相变、高温超导体、量子自旋液体、量子材料临界点等问题中都面临这一困境。近年来理论物理学的新进展,让我们有望在这一长期难题上取得突破,这或将推动理论物理学进入新纪元。这一新发展受到两个方面的推动:第一个是过去三十余年通过对有能隙高度纠缠物质相(即拓扑序)的研究,我们发现拓扑序和多体纠缠模式可通过新数学理论——高阶融合范畴——来进行描述和分类;第二个是近十年对对称性本质有了更全面深入的理解。众所周知,对称性可约束低能动力性质,也就是限制无能隙态和量子场论的性质。同样值得注意的是,无能隙态和量子场论在低能区可呈现演生对称性,我们可利用这种演生对称性来表征无能隙态和量子场论的低能性质。过去十年来,我们发现量子系统演生对称性的形式十分丰富:既包括传统群论描述的对称性,也包含反常对称性、高阶群所描述的高阶对称性、反常高阶对称性,以及超越群与高阶群的不可逆对称性等。所有这些广义对称性都可用于表征无能隙态和量子场论的低能性质。当对称性被如此深度推广后,其与(不可逆的)引力反常已难以区分——后者同样可约束低能动力性质。我们又知道(不可逆的)引力反常本质上就是高一维的拓扑序。这两点发现引导我们建立了描述上述广义对称性的统一理论。这一统一理论不是群论,而是高一维的拓扑序,也就是数学上的高阶融合范畴。当把对称性理论如此深远地扩展之后,我们突然发现,有一个愿景,或者说是梦想,也许可以成真:演生的广义对称性可能完全决定无能隙态(也就是量子场论)的低能性质。换言之,每一个可能的低能性质都对应于一个演生的广义对称性。如此一来,对高阶融合范畴的分类(即对高一维的拓扑序的分类)将导致对所有可能低能性质(即可能的共形场论)的分类。若此猜想成立,我们对无能隙态和量子场论的理解将跃升至新高度。量子场论问题,将不是一个微积分问题、微分方程问题、格林函数问题或纤维丛问题,而是一个范畴问题。或者更进一步,是一个数论问题。这完全改变了我们对量子场论和无能隙系统的基本看法和思路。这将成为量子场论与强关联量子物质研究的一个重要的方向,甚至可能是一个主导的方向。中国和华裔科学家在这一新方向有众多开创性的贡献。下面罗列一些这方面早期的直接相关和间接相关的研究工作:[1] Alexei Kitaev, Liang KongModels for gapped boundaries and domain wallshttps://arxiv.org/abs/1104.5047[2] L. Kong and X.-G. Wen,Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions,https://arxiv.org/abs/1405.5858[3] D. Fiorenza and A. Valentino,Boundary conditions for topological quantum field theories, anomalies and projective modular functors,Commun. Math. Phys. 338, 1043 (2015), https://arxiv.org/abs/1409.5723[4] Maissam Barkeshli, Parsa Bonderson, Meng Cheng, Zhenghan WangSymmetry Fractionalization, Defects, and Gauging of Topological Phaseshttps://arxiv.org/abs/1410.4540[5] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,Generalized global symmetries,J. High Energ. Phys. 172, (2015);  https://arxiv.org/abs/1412.5148[6] L. Kong, X.-G. Wen, and H. Zheng,Boundary-bulk relation for topological orders as the functor mapping highercategories to their centers,https://arxiv.org/abs/1502.01690[7] Meng Cheng, Cenke XuA series of (2+1)D Stable Self-Dual Interacting Conformal Field Theorieshttps://arxiv.org/abs/1609.02560[8] Tian Lan, Liang Kong, Xiao-Gang WenA classification of 3+1D bosonic topological orders (I): the case when point-like excitations are all bosonshttps://arxiv.org/abs/1704.04221[9] L. Kong and H. Zheng,Gapless edges of 2d topological orders and enriched monoidal categories,Nucl. Phys. B 927, 140 (2018), https://arxiv.org/abs/1705.01087[10] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin,Topological defect lines and renormalization group flows in two dimensions,J. High Energ. Phys.  2019 (1), 26,https://arxiv.org/abs/1802.04445[11] F. Benini, C. Córdova, and P.-S. Hsin,On 2-group global symmetries and their anomalies,J. High Energ.  Phys. 2019 (3), 118,https://arxiv.org/abs/1803.09336[12] C. Zhu, T. Lan, and X.-G. Wen,Topological nonlinear σ-model, higher gauge theory, and a systematic con-struction of 3+1D topological orders for boson systems,Phys. Rev. B 100, 045105 (2019),https://arxiv.org/abs/1808.09394[13] Qing-Rui Wang, Zheng-Cheng GuConstruction and classification of symmetry protected topological phases in interacting fermion systemshttps://arxiv.org/abs/1811.00536[14] Z. Wan and J. Wang,Higher anomalies, higher symmetries, and cobordisms I: classification of higher-symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory,Annals of Mathematical Sciences and Applications 4, 107 (2019), https://arxiv.org/abs/1812.11967[15] Ce Shen, Ling-Yan HungA Defect Verlinde Formulahttps://arxiv.org/abs/1901.08285[16] R. Thorngren and Y. Wang,Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases,J. High Energ.  Phys. 2024, 132, https://arxiv.org/abs/1912.02817[17] W. Ji and X.-G. Wen,Categorical symmetry and non-invertible anomaly in symmetry-breaking and topological phase transitions,Phys. Rev. Res. 2, 033417 (2020), https://arxiv.org/abs/1912.13492[18] T. Lichtman, R. Thorngren, N. H. Lindner, A. Stern, and E. Berg,Bulk anyons as edge symmetries: Boundary phase diagrams of topologically orderedstates,Physical Review B 104, 075141 (2021),https://arxiv.org/abs/2003.04328[19] L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang, and H. Zheng,Algebraic higher symmetry and categorical symmetry: A holographic and entanglement view of symmetry,Phys. Rev. Res. 2, 043086 (2020), https://arxiv.org/abs/2005.14178[20] Yuting Hu, Yidun WanElectric-Magnetic duality in twisted quantum double model of topological ordershttps://arxiv.org/abs/2007.15636[21] D. Gaiotto and J. Kulp,Orbifold groupoids,J. High Energ. Phys. 2021 (2), 132,https://arxiv.org/abs/2008.05960[22] Yuting Hu, Zichang Huang, Ling-yan Hung, Yidun WanAnyon Condensation: Coherent states, Symmetry Enriched Topological Phases, Goldstone Theorem, and Dynamical Rearrangement of Symmetryhttps://arxiv.org/abs/2109.06145[23] Yu-An Chen, Po-Shen HsinExactly Solvable Lattice Hamiltonians and Gravitational Anomalieshttps://arxiv.org/abs/2110.14644[24] Yichul Choi, Clay Cordova, Po-Shen Hsin, Ho Tat Lam, Shu-Heng ShaoNon-Invertible Duality Defects in 3+1 Dimensionshttps://arxiv.org/abs/2111.01139[25] Justin Kaidi, Kantaro Ohmori, Yunqin ZhengKramers-Wannier-like duality defects in (3+1)d gauge theorieshttps://arxiv.org/abs/2111.01141[26] F. Apruzzi, F. Bonetti, I. Etxebarria, S. Hosseini, and S. Schäfer-Nameki,Symmetry TFTs from string theory,Communications in Mathematical Physics 402, 895 (2023), https://arxiv.org/abs/2112.02092[27] A. Chatterjee and X.-G. Wen,Symmetry as a shadow of topological order and a derivation of topological holographic principle,Phys. Rev. B 107, 155136 (2023), https://arxiv.org/abs/2203.03596[28] Jian-Hao Zhang, Shang-Qiang Ning, Yang Qi, Zheng-Cheng GuConstruction and classification of crystalline topological superconductor and insulators in three-dimensional interacting fermion systemshttps://arxiv.org/abs/2204.13558[29] Zhi-Feng Zhang, Qing-Rui Wang, Peng YeNon-Abelian Fusion, Shrinking and Quantum Dimensions of Abelian Gauge Fluxeshttps://arxiv.org/abs/2208.09228[30] Maissam Barkeshli, Yu-An Chen, Po-Shen Hsin, Ryohei KobayashiHigher-group symmetry in finite gauge theory and stabilizer codeshttps://arxiv.org/abs/2211.11764[31] Wen-Yuan Liu, Shou-Shu Gong, Wei-Qiang Chen, Zheng-Cheng GuEmergent Symmetry in Quantum Phase Transitions: From Deconfined Quantum Critical Point to Gapless Quantum Spin Liquidhttps://arxiv.org/abs/2212.00707[32] Yi-Nan Wang, Yi ZhangFermionic Higher-form Symmetrieshttps://arxiv.org/abs/2303.12633[33] T.  Lan and J.-R.  Zhou,Quantum Current and Holographic Categorical Symmetryhttps://arxiv.org/abs/2305.12917[34] Linhao Li, Masaki Oshikawa, Yunqin ZhengIntrinsically/Purely Gapless-SPT from Non-Invertible Duality Transformationshttps://arxiv.org/abs/2307.04788[35] Ruizhi Liu, Ho Tat Lam, Han Ma, Liujun Zou Symmetries and anomalies of Kitaev spin-S models: Identifying symmetry-enforced exotic quantum matter https://arxiv.org/abs/2310.16839[36] Xing-Yu Ren, Shang-Qiang Ning, Yang Qi, Qing-Rui Wang, Zheng-Cheng GuStacking Group Structure of Fermionic Symmetry-Protected Topological Phaseshttps://arxiv.org/abs/2310.19058[37] Gong Cheng, Lin Chen, Zheng-Cheng Gu, Ling-Yan HungPrecision reconstruction of rational CFT from exact fixed point tensor networkhttps://arxiv.org/abs/2311.18005[38] Leonardo A. Lessa, Meng Cheng, Chong WangMixed-state quantum anomaly and multipartite entanglementhttps://arxiv.org/abs/2401.17357[39] Liang Kong, Zhi-Hao Zhang, Jiaheng Zhao, Hao ZhengHigher condensation theoryhttps://arxiv.org/abs/2403.07813[40] Ruochen Ma, Yabo Li, Meng ChengQuantum Cellular Automata on Symmetric Subalgebrashttps://arxiv.org/abs/2411.19280[41] Ryohei Kobayashi, Yuyang Li, Hanyu Xue, Po-Shen Hsin, Yu-An ChenUniversal microscopic descriptions for statistics of particles and extended excitationshttps://arxiv.org/abs/2412.01886


  TOC